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Summary

Migration/inversion theory implies that illumination angle
compensation should be accounted for in Kirchhoff
prestack depth migration, although it is usually neglected.
Comparisons of subsalt Kirchhoff migration results with
and without illumination angle compensation demonstrate
that inclusion of this amplitude weighting term can
dramatically improve the migrated image, justifying the
increase in implementation effort and cost.

Introduction

It is generally acknowledged that wave equation prestack
depth migration is inherently superior to Kirchhoff prestack
depth migration for severe depth imaging problems such as
beneath salt (Roden and Gochioco, 2002). The inferior
performance of Kirchhoff depth migration is usually
attributed to three factors:

1. Difficulty in accurately ray tracing through complex
velocity models;

2. The failure of many Kirchhoff implementations to
include complete multipathing solutions; and

3. Incomplete implementation of amplitude terms in
Kirchhoff migrations.

It is worth noting that these criticisms are of Kirchhoff
migration implementations, not of the underlying Kirchhoff
migration theory.

An extensive body of work exists analyzing Kirchhoff
prestack depth migration in terms of migration/inversion
theory (for example, Miller et al., 1987; Jin et al., 1992).
These treatments demonstrate that the theoretical
foundations underlying Kirchhoff migration are similar to
those underlying so-called wave equation migration
methods. However, there are fundamental differences in the
positioning and imaging mechanisms that each method
employs.

Because of intrinsic differences in the formulation and
implementation of Kirchhoff and wave equation prestack
depth migrations, each migration type has different
strengths and weaknesses. A commonly acknowledged
strength of wave equation methods is their natural and
inherent incorporation of amplitude factors and
multipathing solutions. Kirchhoff methods, on the other
hand, have inherent practical advantages because of their
extreme flexibility in producing subsets of the output image
volume. This flexibility extends to a wide range of options
for segregating output images into common image gathers,

a property which is particularly important for purposes of
iterative velocity analysis and AVO analysis.

Because computational and other practical considerations
will continue to favor Kirchhoff migration methods for
many applications in the near future, it is desirable to
examine the flaws responsible for quality problems in
Kirchhoff imaging and determine whether better
implementation of existing theory can improve Kirchhoff
depth migration results.

My focus here is on the common neglect of amplitude
terms that compensate for irregular illumination at the
image point. When complex velocity variations in
overlying structure create an “illumination footprint” at the
target depth, failure to compensate for this illumination
irregularity results in the generation of spurious events,
frequently with steep dips, that have earned the label
“Kirchhoff artifacts.” These artifacts can degrade the final
migration results and have adverse effects on interpretation.

Theory

Schleicher et al. (1993) defined prestack Kirchhoff
migration as a weighted diffraction stack that can be
expressed in the form
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where the image point I(x) is formed by a weighted
summation over a travel time surface through an ensemble
of seismic data U (ξ ,τD). The acquisition geometry is
denoted by ξ,, and τD is the travel time for reflections from
an image point at x.

For a constant-azimuth common-offset ensemble, ξ =
(ξ1, ξ2)

T denotes the midpoint location of each trace. (For a
non-redundant ensemble, traces can be uniquely identified
by a single pair of coordinates.) The travel time surface
τD(ξ,x) is the sum of the travel times from the source to the
image point and from the image point to the receiver:
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The weight function wQ(ξ,x) includes terms for obliquity
and geometrical spreading compensation. For
completeness, it should also normalize for the direction of
illumination provided by elements of U(ξ,τD) to the image
point I(x). The need for this normalization is a consequence
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of choosing the acquisition geometry as the basis of
integration; the integrand of equation 1 describes the
illumination of an image point at x, but the variable of
integration does not evenly sample the illumination angle.

Implementation

The direction of illumination q can be expressed as the sum
of the source and receiver slowness vectors p1 and p2

(Figure 1). This vector quantity is a function of the
overburden velocity structure. The zero-offset raypath
cartoon in Figure 2 illustrates that, given regular acquisition
geometry, the illumination vector q at an image point will
not vary regularly in the general case. Without proper
weighting compensation, this irregularity in illumination
angle will produce artifacts in the migrated image.

Operto et al. (1998) made the observation that the
illumination normalization issue is significantly simplified
if Kirchhoff migration is reformulated as summation over
the illumination variable. The expression for the weighted
diffraction stack is then
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Here w (ξ ,x ) includes only terms for obliquity and
geometrical spreading.

By making the illumination angle the basis of integration,
equation 3 implicitly guarantees illumination
normalization. Koren et al. (2002) have shown imaging
examples explicitly implementing this approach as an
output-driven migration in which rays are shot from the
image point to the surface. In general, however, output-
driven migration schemes, in which travel time tables are
calculated with respect to the image points in the output
volume, are significantly more expensive than input-driven
migration schemes, in which travel time tables are
calculated with respect to locations on the measurement
surface.

If the practical problems associated with output-driven
migration are to be avoided, a Jacobian function is needed
to reconcile wQ in equation 1 with w in equation 3 so that
illumination angle compensation may be included in an
input-driven migration procedure. This change in variables
is accomplished using the Beylkin determinate as described
in Jousset et al. (2000). Given that this function relates the
acquisition coordinates ξ to the direction of illumination q,
it is a function of both the acquisition geometry and the
subsurface model.

The vector q  is a function of the overburden velocity
structure, and, in the general case, it cannot be computed
until source and receiver travel time functions are
combined for imaging. For a general input-driven migration
implementation, however, illumination angle compensation
requires knowledge of the final distribution of all
illumination angles at each image point (Albertin et al.,
1999). Fortunately, it is possible to side-step this onerous
implementation requirement if some form of acquisition
regularization has been applied to the survey data before
migration. Illumination angle compensation may then be
calculated using derivatives of the travel time tables
(Kästner, 2001).

Discussion

Illumination angle normalization is effectively a
contribution scaling, which is a requirement for amplitude
preservation. For constant-azimuth common-offset seismic
data, the illumination angle term is a function of the
acquisition midpoint density and the density and orientation
of rays at each reflection point.

In practice, illumination angle compensation suppresses
Kirchhoff migration artifacts due to focusing of the
wavefield by velocity anomalies in the overburden.
Structures such as salt stocks tend to funnel rays traveling
through salt bodies into relatively narrow packages; energy
from these narrow windows of illumination penetration are
smeared throughout the subsalt region when normalization
for illumination angle is neglected.

Figure 1:  The illumination vector q  is the sum of the
slowness vectors p1 and p 2. The slowness vectors have
equal length (the inverse of the velocity at x), so q bisects
the angle between them.
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Figures 3 and 4 show images from two 3-D Kirchhoff
prestack depth migrations of a deep water salt body. The
same velocity model was used for both migrations. The
migration that produced the image in Figure 3 was run
without illumination angle compensation. Note the typical
Kirchhoff migration artifacts where indicated. The image
shown in Figure 4 was produced using Kirchhoff prestack
depth migration with illumination angle compensation.
Subsalt migration artifacts that are present in Figure 3 are
greatly attenuated.

Summary

Kirchhoff and one-way wave equation prestack depth
migration methods share a common foundation in
migration/inversion theory. However, inherent differences
in algorithm methodologies pose different challenges when
implementing each method. In the case of illumination
normalization, extra effort must be extended in both
algorithm design and computational expenditure to include
amplitude corrections that are implicitly included in wave
equation formulations. In current Kirchhoff migration
practice, illumination angle compensation is frequently
neglected to avoid this additional effort.

The example presented with this paper demonstrates that
explicit inclusion of illumination angle compensation in
Kirchhoff prestack depth migration produces imaging
results that are significantly improved over those that are
produced by Kirchhoff prestack depth migration without
this normalization. This is particularly true in the case of
subsalt depth imaging, where illumination distortions due
to the salt geometry are most severe.
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Figure 2:  The effect of salt on the illumination vector q at an image point for a regular zero-offset acquisition geometry.
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Figure 4: Kirchhoff prestack depth migration of a deep water salt body with illumination angle compensation.
Subsalt migration artifacts present in Figure 3 are greatly attenuated. Data provided courtesy of Unocal.

Figure 3: Kirchhoff prestack depth migration of a deep water salt body without illumination angle compensation.
Note the subsalt migration artifacts where indicated. Data provided courtesy of Unocal.


